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Abstract

The self-Q-switched laser performance of monolithic Cr4þ,Nd3þ:YAG concave-planar resonator with 5-mm length

was studied experimentally and theoretically. The slope efficiency is as high as 24% and pump threshold is as low as 64

mW. The pulse width, the single pulse energy and the pulse repetition rate of monolithic Cr,Nd:YAG self-Q-switched

laser were measured as a function of absorbed pump power. With the increase of pump power, the pulse width de-

creases and the pulse energy and the pulse repetition rate increase. The average output power of 91 mW with pulse

width of 7 ns at repletion rate of 35.5 kHz was obtained at the maximum absorbed pump power of 440 mW, the peak

power is as high as 370 W. The theoretical prediction of pulse energy, pulse width and pulse repetition rate as a function

of absorbed pump power based on rate equations is in a good agreement with our experimental data. This can lead to

develop the diode laser-pumped monolithic self-Q-switched solid-state microchip lasers.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

In recent years, Cr4þ-doped crystals have at-

tracted a great deal of attention as passive Q-

switches [1–8] in comparison with previously used

saturable absorbers, such as dyes [9] and LiF:F2
�

color center crystals [10]. Cr4þ-doped crystals are
more photochemically and thermally stable, have a

higher damage threshold and large absorption

cross-section, low saturable intensity and high

damage threshold. Especially, Cr4þ-doped YAG

crystal, owing to its easy growth of high quality

and high concentration single crystal and can be

co-doped with gain medium to form self-Q-

switched laser crystals [5,11–14], has attracted a
great deal of interest in recent years. Zhou and
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co-workers [5,11–14] first studied the self-Q-

switched laser performance of LD-pumped

Cr,Nd:YAG crystal, the pump source they used is

the quasi-CW mode AlInGaAs diode laser. Using

different laser cavities, they obtained theQ-switched

pulse energy of 7 lJ and an FWHM duration of 3.5
ns [5], pulse energy of 10lJ and anFWHMduration

of 3.5 ns [11], pulse energy of 3 lJ and a FWHM

duration of 30 ns, and pulse energy of 8 lJ and an
FWHM duration of 270 ps [14], respectively. The

highest net optical conversion efficiency they ob-

tained using different laser cavities is 8%.Dong et al.

[15] also reported theLD-pumpedCr,Nd:YAGself-

Q-switched laser, but the optical conversion effi-
ciency is about 13% and slope efficiency is 20%.

Dong et al. [16] have reported the high efficiency

output of Cr,Nd:YAG self-Q-switched laser, the

optical conversion efficiency is as high as 21.6% and

the slope efficiency is 26%. It is well known that the

distribution coefficient of Nd3þ ions in YAG is

about 0.18, so the concentration of Nd in YAG

cannot be high and if the concentration is higher
than 1 at.%, the distribution of Nd along the ra-

dius and growth axe is not unity. This will degrade

the laser performance of Cr,Nd:YAG crystal. So

growth of high quality Cr,Nd:YAG crystals is very

essential to obtain good laser performance. In this

paper, we present the performance of Ti:sapphire

laser-pumped monolithic Cr,Nd:YAG self-Q-swit-

ched laser. The single pulse energy, the pulse width
and repetition rate of 1064 nm laser have been

measured as a function of absorbed pump power.

Meanwhile, the coupled equations of self-Q-swit-

ched laser were given and the numerical solutions of

the equations agree with the experimental results in

entire pump region.

2. Experiments

The Cr,Nd:YAG crystal used in the experiment

was grown by using the standard Czochralski (CZ)

method. Cr4þ is regarded to be substituted into

distorted tetrahedral Al site, therefore a charge

compensator is required and CaCO3 was added to

as a charge compensator. The nominal concentra-
tions of Cr and Nd in Cr,Nd:YAG crystal are 0.01

and 1 at.%, respectively. The absorption spectra

weremeasured using aCary 500 ScanUV–Vis–NIR
spectrophotometer at room temperature (298 K).

The schematic of CW Ti:sapphire laser-pumped

Cr,Nd:YAG self-Q-switched laser cavity is shown

in Fig. 1. A Cr,Nd:YAG crystal was polished to a

concave-planar geometry as a laser resonator. The

concave mirror has a radius of curvature of 80 mm

and is coated for high transmission at 808 nm and

total reflection at 1064 nm. The planar surface is
coated for 95% reflection at 1064 nm as the output

coupler and total reflection at 808 nm. The overall

cavity length is 5 mm. The misalignment of the

axes of the two mirrors is measured to be less than

0.3�. The laser operation was performed at 278 K
by using the constant-temperature water-cooled

circulation with a copper surface. The Q-switched

pulses were recorded using a fast Si PIN detector
with a 1.5 ns rise time and a Tektronix TDS 380

digitizing oscilloscope with 400 MHz sampling

rate in the single-shot mode. The output power

was measured using a laser power meter. The

Ti:sapphire laser output, after beam shaping with

a focal lens, is focused onto a spot with a diameter

of 50 lm. The Ti:sapphire laser is operated in the
CW mode, and after focal lens the loss is ap-
proximately 8%.

3. Results and discussion

The room temperature absorption spectrum of

Cr,Nd:YAG crystal is showed in Fig. 2. In Cr-

doped YAG crystal, there are several valent states
of Cr ions, Cr3þ is the dominant state, Cr4þ can be

formed in Cr-doped YAG crystal by adding Ca2þ

compensation charge and YAG crystal growing in

Fig. 1. The experimental setup of Ti:sapphire laser-pumped

Cr,Nd:YAG self-Q-switched laser.
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oxygen atmosphere. But Cr4þ is only a small

fraction (about 4% [17]) of total Cr ions added in
Cr,Nd:YAG crystal. The absorption spectrum of

Nd3þ is superimposed over that of Cr3þ, there is a

broad absorption spectrum of Cr4þ centered at

1.06 lm. The absorption coefficient is 7.3 cm�1 at

the pumping wavelength of 808 nm for Nd3þ ions

and is 0.23 cm�1 at 1064 nm for Cr4þ. The emis-

sion cross-section is 2.35� 10�19 cm2 [16] at 1064

nm, the lifetime is about 210 ls, a little shorter
than that of Nd:YAG (230 ls).
With Cr,Nd:YAG crystal as the active medium,

under the CW pumping, the repetitively Q-swit-

ched laser was obtained. The average output

power, pulse repetition rate and pulse width

(FWHM) in a self-Q-switched mode were mea-

sured as functions of the absorbed pump power.

The pulse energy was determined from the aver-

age output power and pulse repetition rate. The

peak power was determined from the pulse en-

ergy and pulse width. Fig. 3 shows the average

output power, pulse energy and peak power of

Cr,Nd:YAG self-Q-switched laser as a function of
the absorbed pump power. It can be seen that the

average output power depends linearly on the

absorbed pump power, and there is no saturation,

so high power laser output can be obtained by

using high power diode laser as pumping source.

Form the linear relationship of average output

power and the absorbed pump power, the thresh-

old pump power and slope efficiency can be
extrapolated. The threshold pump power is ap-

proximately 64 mW and the slope efficiency is

24.1%. And the optical efficiency (the ratio of av-

erage output power and the incident pump power)

of the self-Q-switched laser is approximately

20.6%. The highest average output power of 91

mW at 1064 nm is obtained at an absorbed pump

power of 440 mW. We obtained 2.56 lJ self-Q-
switched pulses with a pulse width of 7 ns, result-

ing in a peak power of 370 W at a repetition rate of

35.5 kHz at 440 mW absorbed pump power (Fig.

3).

Fig. 4 shows the pulse repetition rate and the

pulse width as functions of the absorbed pump

power. The pulse repetition rate (f) and pulse

width (tp) are another two important parameters
of passively Q-switched lasers. The incident pump

power has a perceptible effect on the pulse repeti-

tion rate, the pulse width of the self-Q-switched

laser. The repetition rate increases linearly with the

increasing absorbed pumping power, as expected

Fig. 3. Average output power, pulse energy and peak power versus absorbed pump power of Cr,Nd:YAG self-Q-switched laser.

Fig. 2. The absorption spectrum of Cr,Nd:YAG crystal at

room temperature.
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from the passively Q-switched theory. The pulse

width decreases with the increasing absorbed
pump power, and pulse width keeps nearly the

same value of 7 ns at the higher absorbed pump

power. Fig. 5 shows a typical single self-Q-swit-

ched laser pulse with energy of 2.56 lJ and a pulse
width of 7 ns at pulse repetition rate of 35.5 kHz at

the maximum absorbed pump power of 440 mW,

the corresponding peak power is 370 W.

The coupled rate equations of photon density in
the self-Q-switched resonator, which includes the

excited-state absorption of the saturable absorber

and the population reduction factor of the laser,

are as follows [18,19]:

d/
dt

¼ /
tr

2rnl
�

� 2rgngls � 2renels � ln
1

R

� �
� L

�
;

ð1Þ
dn
dt

¼ �crc/n� n
s
þ Wp; ð2Þ

dng
dt

¼ �rgc/ng þ
ns0 � ng

ss
; ð3Þ

ng þ ne ¼ ns0; ð4Þ

where / is the photon density in the laser cavity of

optical length l0, n is the population inversion

density of the laser rod, r is the stimulated emis-

sion cross-section of the laser crystal, tr is the
cavity round-trip time, tr ¼ 2n1l=c, n1 is the re-

fractive index of the laser crystal, l is the length of

the laser crystal, c is the speed of the light, rg is the
absorption cross-section of ground state of the

saturable absorber, re is the absorption cross-sec-
tion of the excited state, ls is the length of the

saturable absorber, for Cr,Nd:YAG self-Q-swit-

ched laser crystal, ls ¼ l, ng and ne are the absorber
ground state and excited state population density,

respectively, ns0 is the total population density of

the saturable absorber, R is the reflectivity of the

output coupler, L is the nonsaturable intracavity

round-trip dissipative optical loss, c is the inver-

sion reduction factor, c ¼ 1 for Nd-doped four-

level solid-state lasers, Wp is the volumetric pump

rate into the upper laser level and is proportional

Fig. 5. Oscilloscope trace of a single self-Q-switched laser pulse

with a pulse width of 7 ns at 35.5-kHz repetition rate at ab-

sorbed pump power of 440 mW.

Fig. 4. Repetition rate and pulse width versus the absorbed pump power Cr,Nd:YAG self-Q-switched laser.
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to the CW pump power and s is the lifetime of the
upper laser level in the gain medium, ss is the ex-
cited-state lifetime of saturable absorber.

With CW pumping, the laser will be passively

Q-switched as soon as the gain exceeds the com-
bined saturable and unsaturable losses in the res-

onator. As the incident pump power is increased,

the laser eventually reaches a threshold condition

and begins to repetitively Q-switch with a time

interval between pulses, tc. The pulse energy and

pulse repetition rate will be increased and the pulse

width will be decreased with further increasing of

the incident pump power.
For CW-pumped repetitive Q-switching laser at

a repetition rate f, the maximum time available for

the inversion to build up between pulses is

tc ¼ 1=f . Therefore, the initial inversion density of
the Q-switch under the influence of the absorbed

pump power can be written as [9]: ni ¼ nCW�
ðnCW � nfÞ expð�1=sf Þ in order to have the inver-
sion return to its original value after each Q-switch
cycle, where nCW is the CW pumping inversion

density inside the resonator, nCW ¼ Wps, Wp is the

volumetric pump rate into the upper laser level

and is proportional to the CW pump power,

Wp ¼ Pp=hmpApl, Pp is the incident pump power,

hmp is the pump photon energy, Ap is the pump

beam area and l is the length of the gain medium.

The internal optical loss of the laser resonator
can be determined by using the logarithm of re-

flectivity of the different output couplers and the

threshold pump power for each output coupler,

described as follows [9]:

� lnR ¼ 2kPth � L; ð5Þ

whereR is the reflectivity of the output coupler, k is
the pumping coefficient, and Pth is the threshold

pump power. The internal optical loss of self-Q-

switched Cr,Nd:YAG resonator studied here is es-

timated to be L ¼ 0:0323, which was determined in
[16] and is used here to stimulate the theory calcu-

lation of this self-Q-switched Cr,Nd:YAG laser.

The output pulse energy E, peak power P and

pulse width sp of self-Q-switched Cr,Nd:YAG la-
ser can be written as [20]:

E ¼ hmA
2rc

ln
1

R

� �
ln

ni
nf

� �
; ð6Þ

P ¼ hmAl
ctr

ln
1

R

� �
ni

�
� nt � nt0 ln

ni
nt

� �

� nið � nt0Þ 1

�
� nt

ni

� �a�
1

a

�
; ð7Þ

sp �
E
P
; ð8Þ

where hm is the photon energy, A is the active area

of the laser beam in the laser medium, ni, nt and nf
are the population inversion densities at the start

of Q-switching, the point of maximum power and

the end of the Q-switched pulse, respectively; a is a
synthetic dimensionless parameter, a ¼ rg=cr, nt0
corresponds to the nt in the case of a ! 1,

nt0 ¼ nth ln
1

R

� ���
þ re

rg

� �
ln

1

T 2
0

� �
þ L

��
�

ln
1

R

� ��
þ ln

1

T 2
0

� �
þ L

�
;

where nth is the population inversion density at

threshold,

nth ¼ ln
1

R

� ��
þ ln

1

T 2
0

� �
þ L

��
2rlf g;

T0 is the initial transmission of the saturable ab-

sorber.

Eqs. (6) and (7) contain three unknown vari-

ables, ni, nf and nt. These unknown variables can

be obtained through numerical solving of Eqs. (1)–

(3), the related parameters used in the numerical
solution of Eqs. (1)–(3) are listed in Table 1. The

dotted lines in Figs. 3(b) and 4(b) show the cal-

culated values of the single pulse energy and the

pulse width as a function of the absorbed pump

power, respectively. It can be seen from Figs. 3(b)

and 4(b) that the theoretical calculations are in fair

agreement with the experimental results. From the

theoretical calculations and the experimental re-
sults, we can see that the laser characteristics of the

self-Q-switched Cr,Nd:YAG laser depend strongly

on the absorbed pump power. With the increase of

the absorbed pump power, the pulse energy in-

creases and the pulse width decreases. However,

there are also some discrepancies between the

calculations and the experimental results, espe-

cially at the lower absorbed pump power, with the
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decrease of the absorbed pump power, the differ-
ence between the calculated pulse energy and

measured pulse energy increases, so is the differ-

ence between the calculated pulse width and the

measured pulse width. This is because the uniform

excitation in the gain medium is assumed in the

theoretical analysis. In fact, it is impossible to

achieve in practice, the pump beam area will vary

at different absorbed pump powers, and the pop-
ulation inversion density will vary with distance

from the cylinder axis. Therefore, the effective

pump area will be bigger at lower pump power

level than that at high pump level. Another cause

of this difference between calculated results and the

experimental results may be caused by the uns-

turable loss at lower pump level that is higher than

that at higher pump level. This is attributed to the
nonlinear absorption nature of saturable absorber,

Cr4þ, the higher the lasing intensity, the lesser

unsturable loss. Also the related parameters in

Table 1 used for calculation are not well known,

such as the ground absorption cross-section and

the excited state absorption cross-section of Cr4þ

in YAG crystals.

According to the theoretical analysis, when the
pump power is well in excess of the pump thresh-

old, the pulse repetition rate, f, should increase

linearly with the pump power, and the pulse

repetition rate of a continuously pumped passively

Q-switched laser can be written as [20]:

f ¼ s ln
ðWp=Wpth

Þ � b

ðWp=WpthÞ � 1

� ��1
; ð9Þ

where b ¼ 1� ðfa=cÞð1� nf=niÞ, Wpth
¼ ni=s, Wp

corresponds to the population density pumped to

the upper laser level per unit time, Wpth is the

threshold of Wp, s is the upper level laser lifetime.
The numerical solutions of Eqs. (1)–(3) may obtain
a train of laser pulses under the CW pump power,

from Eq. (9), the pulse repetition rate can be cal-

culated for different absorbed pump power. The

dotted lines in Fig. 4(a) show the calculated pulse

repetition rate versus the absorbed pump power.

From Fig. 4(a), we can see that the experimental

results agree well with the prediction of the theo-

retical calculation.

4. Conclusion

In conclusion, the high efficient laser perfor-

mance of self-Q-switched laser in the co-doped

Cr4þ,Nd3þ:YAG monolithic concave-planar reso-

nator with 5-mm thickness was demonstrated. The
slope efficiency is as high as 24.1% and the pump

threshold is as low as 64 mW. And the high av-

erage output power of this monolithic Cr,Nd:

YAG self-Q-switched laser can be obtained by

using high power laser diode as pumping source.

The pulse width, the single pulse energy and the

pulse repetition rate were measured under the in-

fluence of the absorbed pump power, the average
output power of 91 mW with pulse width of 7 ns at

repletion rate of 35.5 kHz was obtained at the

maximum absorbed pump power of 440 mW, the

peak power is as high as 370 W. And the experi-

mental results agree with the numerical calcula-

tions of the passively Q-switched rate equations.

For this kind of the monolithic laser cavity design,

we can put a second harmonic generator such as
KTP or KDP crystals at the end of the laser cavity,

to realize the frequency-doubling, so that this can

lead to develop the diode laser-pumped compact

monolithic self-Q-switched solid-state lasers.
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Table 1

The parameters for calculating the theoretical results

rg 4.3� 10�18 cm2 [20]

re 8.2� 10�19 cm2 [20]

r 2.35� 10�19 cm2 [16]

s 210 ls [16]
ss 3.4 ls
c 1

T0 90%

l 0.5 cm

A 3.925� 10�5 cm2

tr 0.607 ns

L 0.0323

hmp 2.46� 10�19 J

hm 1.86� 10�19 J
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