导师介绍

发布时间: 2015-09-07      访问次数: 3849

董俊

教授、博士生导师

厦门大学信息科学与技术学院副院长

享受国务院颁发政府特殊津贴专家(2012年)

新世纪百千万人才工程国家级人选(2009年)

教育部新世纪优秀人才支持计划(2009年)

工作单位:厦门大学息科学与技术学院电子工程系

电子邮箱:jdong@xmu.edu.cn

电话: +86-592-258-0004


教育背景:

2000          工学博士,中国科学院上海光学精密机械研究所

1997          工学硕士,西安交通大学

1992          工学学士,西安交通大学

工作经历:

20131–                厦门大学信息科学与技术学院副院长

2008–                     厦门大学电子工程系教授

2007–2008           研究员,英国赫瑞-瓦特大学物理系

2003–2007           研究员,日本电气通信大学激光科学研究所

2001–2003           博士后,美国中弗罗里达大学光学学院/CREOL

2000–2001           助理研究员,中国科学院上海光学精密机械研究所

1992–1994           助理工程师,包头钢铁稀土公司

主持科研项目:  

2015年2018年          基于复合材料的IG模式可控被动调Q微片激光器研究(项目批准号:61475130),国家自然科学基金面上项目

20132016           基于Yb:YAG/Cr4+:YAG复合材料的高峰值功率被动调Q微片激光器研究(项目批准号:61275143),国家自然科学基金面上项目

20102013           亚纳秒、峰值功率大于1MWYb:YAG/Cr4+:YAG激光陶瓷微片激光器研究(项目批准号:NCET-09-0669),教育部新世纪优秀人才支持计划

20102013           Yb:YAG晶体取向选择不同偏振态微片激光器及其机理研究(编号20100121120019),教育部博士点基金项目

20102013           高效率、高峰值功率、亚纳秒被动调Q Yb:YAG微片激光器,教育部留学回国人员科研启动基金项目

学术兼职:

2010        IEEE会员

2008–        日本电气通信大学激光科学研究所(Institute for Laser Science, University of Electro-Communications, Japan客座教授

2007        Laser Ceramic Symposium 激光透明陶瓷研究会国际委员

2006        IEEE杂志的特邀审稿人

2005        Applied Physics Letters 特邀审稿人

2004        OSAOptical Society Of America)高级会员

2002        OSA出版Optics LettersOptics Express等杂志的特邀审稿人

研究领域:

激光技术与光电子材料

●     基于复合材料的高效、高峰值功率激光二极管泵浦的被动调Q微片激光器研制

●     高峰值功率被动调Q微片激光器在激光加工、激光点火、非线性光学转换产生新型激光光源及光通信中的应用研究

●     激光材料的光学性能分析研究,制备用于产生高峰值功率被动调Q激光输出的Yb:YAG/Cr4+:YAGNd:YAG/Cr4+:YAG复合激光材料

●     用于被动调Q激光器的新型激光材料的光学与激光性能研究

●     多功能复合激光陶瓷材料的光学与激光性能的研究

●     基于复合材料的Yb:YAG/Cr,Yb:YAG自调Q激光器的性能研究

●     用于激光显示、激光投影、数据存储等的小型化、集成化、高峰值功率绿光、蓝光激光器的研究

●     利用微片固体激光器产生高阶Ince-Gaussian激光光束用于生物分子调控及材料结构分析

研究成果:

   非线性光学研究

   首次在国际上实现了用Cr4+:YAG被动调Q Yb:YAG激光输出

   首次研制出了Cr,Yb:YAG自调Q微片激光器

   对掺杂不同离子的激光材料进行了不同温度下荧光寿命和发射界面积的研究工作,特别是Yb:YAG晶体在不同温度下荧光寿命及发射界面积的测定对于该材料应用于低温激光及核聚变领域起到了指导性的作用

   首次实现了Yb:YAG透明激光陶瓷的高转化效率、双波长激光输出

   系统研究了Yb掺杂浓度对Yb:YAG陶瓷光学及激光性能的影响

   首次在国际上实现了Yb:YAG/Cr4+:YAG复合陶瓷的自调Q亚纳秒激光输出

   <111>方向的Yb:YAG激光晶体中发现了晶体取向自选择的线性偏振激光输出

   首次在国际上研制出了高效Cr4+:YAG被动调Q Yb:LuAG微片激光器,斜率效率高达40%,此项研究成果在Photonics Spectra上做了专门的报道

   首次提出了Yb:YAG强化Cr,Yb:YAG自调Q激光性能的构想,并采用Yb:YAG/Cr,Yb:YAG复合结构获得了高效的自调Q激光输出

主讲课程:

●     光电显示(本科生课程)

●     量子电子学(研究生课程)

●     激光材料与技术(研究生课程)

指导研究生:

张明明,博士生,    2014-2018

陈迪萌,博士生,    2015-2019年

王小磊,博士生,    2015-2019年

贺  瑜, 硕士生, 2013-2016

李超玉,硕士生,    2013-2016

潘  越,硕士生   2016-2019年 

彭  博,硕士生, 2016-2019

郑志芬,硕士生, 2016-2019

乔希豪,硕士生, 2016-2019年 

王晓杰,硕士生,    2015-2018年

何宏森,硕士生,    2015-2018年

任滢滢,博士生,    2009-2014

白胜闯,博士生,    2011-2016

程辉辉,博士生,    2009-2015

徐  洁,硕士生,  2014-2017

林博鑫,硕士生,  2014-2017

    剑,硕士生,  2009-2012

许国章,硕士生,    2010-2013

曹梦军,硕士生,    2010-2013

    莹,硕士生,    2011-2014

王光宇,硕士生,    2012-2015

    晓,硕士生,    2012-2015

    林,硕士生,    2012-2015

获奖情况:

美国光学学会(OSA)高级会员, 2013

享受国务院颁发政府特殊津贴专家,2012

新世纪百千万人才工程国家级人选,2009

教育部新世纪优秀人才支持计划,2009

中国科学院院长奖学金优秀奖,2000

上海市普通高校优秀毕业生,2000

发表论文:

1. C.Y.Li,J.Dong*,2016.Pump beam waist-dependent pulse energy generation in Nd:YAG/Cr4+:YAG passively Q-switched microchip laser.Journal of Modern Optics,1143052

2. M. M. Zhang, S. C. Bai, J. Dong*. Advances in Ince-Gaussian Modes Laser[J]. Laser & Optoelectronics Progress, 2016, 53(2): 020002

3. S.C. Bai, J. Dong*, GTR-KTP enhanced stable intracavity frequency doubled Cr,Nd:YAG self-Q-switched green laser, Laser Physics, 2015. 25(2): p. 025002.

4. G.Y. Wang, D.M. Chen, Y. Cheng, J. Dong*. Yb:YAG enhanced Cr,Yb:YAG self-Q-switched microchip laser under QCW laser-diode pumping, Optics & Laser Technology, 2015, 68:136-140.

5.  J. Dong*, Y.Y. Ren and H.H. Cheng, 2014. >1 MW peak power, an efficient Yb:YAG/Cr4+:YAG composite crystal passively Q-switched laser, Lasers Physics, 24(5): 055801

6.  Y.Y. Ren and J. Dong*, 2014. Passively Q-switched microchip lasers based on Yb:YAG/Cr4+:YAG composite crystal, Optics Communications, 312(0): 163-167

7. J. Dong*, Y.Y. Ren, G.Y. Wang, and Y. Cheng, 2013. Efficient laser performance of Yb:Y3Al5O12/Cr4+:Y3Al5O12 composite crystals, Laser Physics Letters, 10(10): 105817

8. J. Dong*, J. Ma, Y.Y. Ren, G.Z. Xu and A.A. Kaminskii , 2013. Generation of Ince-Gaussian beams in highly efficient, nanosecond Cr, Nd:YAG microchip lasers, Lasers Physics Letters, 10(8): 085803

9. S.C. Bai, J. Dong*, and X. Zhou, 2013. An efficient watt-class intracavity frequency doubled Cr,Nd:YAG/KTP miniature green laser, IEEE Photonics Technology Letters, 25(9): 848-850

10. J. Dong*, G.Y. Wang, Y. Cheng 2013. Highly efficient passively Q-switched Yb:YAG microchip lasers under high intensity laser-diode pumping. Laser Physics, 23(3): 035802.

11. A.A. Kaminskii, O. Lux, H. Rhee, H.J. Eichler, H. Yoneda, A. Shirakawa, K. Ueda, B. Zhao, J. Chen, J. Dong, J. Zhang 2012. Crystal-host Gd0.5Lu0.5VO4 for Ln3+-lasants: a new high-gain many-phonon c (3)-active tetragonal vanadate-SRS spectroscopy and nonlinear-laser effects. Applied Physics B-Lasers and Optics, 109(4): 649-658.

12. A.A. Kaminskii, O. Lux, H. Rhee, H.J. Eichler, K. Ueda, H. Yoneda, A. Shirakawa, B. Zhao, J. Chen, J. Dong, J. Zhang 2012. New manifestations of c (3)-nonlinear laser interactions in tetragonal LuVO4 and YbVO4 crystals attractive for SRS-converters and self-Raman lasers. Laser Physics Letters, 9(12): 879-887.

13. J. Dong*, G.Z. Xu, J. Ma, M.J. Cao, Y. Cheng, K. Ueda, H. Yagi, A.A. Kaminskii 2012. Investigation of continuous-wave and Q-switched microchip laser characteristics of Yb:YAG ceramics and crystals. Optical Materials, 34(6): 959-964.

14. Y. Cheng, J. Dong*, Y.Y. Ren 2012. Enhanced performance of Cr,Yb:YAG microchip laser by bonding Yb:YAG crystal. Optics Express, 20(22): 24803-24812.

15. J.Y. Zhou, J. Ma, J. Dong*, Y. Cheng, K. Ueda, A.A. Kaminskii 2011. Efficient, nanosecond self-Q-switched Cr,Yb:YAG lasers by bonding Yb:YAG crystal. Laser Physics Letters, 8(8): 591-597.

16. J. Ma, J. Dong*, K. Ueda, A.A. Kaminskii 2011. Optimization of Yb:YAG/Cr4+:YAG composite ceramics passively Q-switched microchip lasers. Applied Physics B-Lasers and Optics, 105(4): 749-760.

17. A.A. Kaminskii, H. Rhee, O. Lux, H.J. Eichler, L. Bohaty, P. Becker, J. Liebertz, K. Ueda, A. Shirakawa, V.V. Koltashev, J. Hanuza, J. Dong, D.B. Stavrovskii 2011. Many-phonon stimulated Raman scattering and related cascaded and cross-cascaded c(3)-nonlinear optical effects in melilite-type crystal Ca2ZnSi2O7. Laser Physics Letters, 8(12): 859-874.

18. A.A. Kaminskii, H. Rhee, O. Lux, H.J. Eichler, S.N. Bagayev, H. Yagi, K. Ueda, A. Shirakawa, J. Dong 2011. Stimulated Raman scattering in "garnet" Lu3Al5O12 ceramics - a novel host-materiel for Ln- and TM-lasant ions. Laser Physics Letters, 8(6): 458-464.

19. J. Dong*, J. Ma, Y.Y. Ren 2011. Polarization manipulated solid-state lasers with crystalline-orientations. Laser Physics, 21(12): 2053-2058.

20. J. Dong*, J. Ma, Y. Cheng, Y.Y. Ren, K. Ueda, A. Kaminskii 2011. Comparative study on enhancement of self-Q-switched Cr,Yb:YAG lasers by bonding Yb:YAG ceramic and crystal. Laser Physics Letters, 8(12): 845-852.

21. A.A. Kaminskii, S.N. Bagayev, K. Ueda, J. Dong, H.J. Eichler 2010. New passively Q-switched LD-pumped self-Raman laser with single-step cascade SE -> SRS wavelength conversion on the base of monoclinic Nd3+:Y2SiO5 crystal. Laser Physics Letters, 7(4): 270-279.

22. J. Dong*, K. Ueda, H. Yagi, A.A. Kaminskii 2010. Effect of polarization states on the laser performance of passively Q-switched Yb:YAG/Cr,Ca:YAG microchip lasers. IEEE Journal of Quantum Electronics, 46(1): 50-56.

23. J. Dong*, K. Ueda, A.A. Kaminskii 2010. Laser-diode pumped efficient Yb:LuAG microchip lasers oscillating at 1030 and 1047 nm. Laser Physics Letters, 7(10): 726-733.

24. A.A. Kaminskii, J. Dong*, K. Ueda, M. Bettinelli, M. Grinberg, D. Jaque 2009. Q-switched nanosecond Nd3+:Ca(NbO3)2 crystalline self-Raman laser with single-step cascade SE (lSE=1.0615 mm of 4F3/2 -> 4I11/2 channel) -> SRS (lSt1)=1.1741 mm of wSRS 904 cm-1 promotion vibration mode) wavelength conversion. Laser Physics Letters, 6(11): 782-787.

25. A.A. Kaminskii, J. Dong*, H.J. Eichler, J. Hanuza, K. Ueda, M. Maczka, H. Rhee, M. Bettinelli 2009. Laser and nonlinear-laser properties of undoped and Nd3+-doped orthorhombic Ca(NbO3)2 single crystals: new stimulated-emission performance and high-order picosecond stimulated Raman scattering covering more than two octave Stokes and anti-Stokes wavelengths. Laser Physics Letters, 6(11): 821-832.

26. A.A. Kaminskii, M. Bettinelli, J. Dong, D. Jaque, K. Ueda 2009. Nanosecond Nd3+:LuVO4 self-Raman laser. Laser Physics Letters, 6(5): 374-379.

27. A.A. Kaminskii, S.N. Bagaev, K. Ueda, A. Shirakawa, T. Tokurakawa, H. Yagi, T. Yanagitany, J. Dong 2009. Stimulated-emission spectroscopy of fine-grained "garnet" ceramics Nd3+:Y3Al5O12 in a wide temperature range between 77 and 650 K. Laser Physics Letters, 6(9): 682-687.

28. J. Dong*, K. Ueda, P.Z. Yang 2009. Multi-pulse oscillation and instabilities in microchip self-Q-switched transverse-mode laser. Optics Express, 17(19): 16980-16993.

29. J. Dong*, K. Ueda, H. Yagi, A.A. Kaminskii, Z. Cai 2009. Comparative study the effect of Yb concentrations on laser characteristics of Yb:YAG ceramics and crystals. Laser Physics Letters, 6(4): 282-289.

30. A.A. Kaminskii, H. Rhee, H.J. Eichler, K. Ueda, K. Takaichi, A. Shirakawa, M. Tokurakawa, J. Dong, H. Yagi, T. Yanagitani 2008. New nonlinear-laser effects in crystalline fine-grained ceramics based on cubic Sc2O3 and Lu2O3 oxides: second and third harmonic generation, and cascaded self-sum-frequency mixing in UV spectral region. Laser Physics Letters, 5(2): 109-113.

31. A.A. Kaminskii, V.V. Dolbinina, H. Rhee, H.J. Eichler, K. Ueda, K. Takaichi, A. Shirakawa, M. Tokurakawa, J. Dong, D. Jaque 2008. Nonlinear-laser effects in NH4H2PO4 (ADP) and ND4D2PO4 (DADP) single crystals: almost two-octave multi-wavelength Stokes and anti-Stokes combs, cascaded lasing in UV and visible ranges with the involving of the second and third harmonic generation. Laser Physics Letters, 5(7): 532-542.

32. A.A. Kaminskii, M.S. Akchurin, N. Tanaka, H.J. Eichler, H. Rhee, K. Ueda, K. Takaichi, A. Shirakawa, M. Tokurakawa, J. Dong, Y. Kintaka, S. Kuretake, Y. Sakabe 2008. Nonlinear-laser c(3)-and c(2)-effects in fine-grained highly transparent optical Ba(Mg,Zr,Ta)O3 ceramics and their microhardness. Physica Status Solidi a-Applications and Materials Science, 205(7): 1666-1671.

33. A.A. Kaminskii, M.S. Akchurin, P. Becker, K. Ueda, L. Bohaty, A. Shirakawa, M. Tokurakawa, K. Takaichi, H. Yagi, J. Dong, T. Yanagitani 2008. Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants. Laser Physics Letters, 5(4): 300-303.

34. J. Dong*, K.I. Ueda, H. Yagi, A.A. Kaminskii 2008. Laser-diode pumped self-Q-switched microchip lasers. Optical Review, 15(2): 57-74.

35. J. Dong*, K.I. Ueda, A.A. Kaminskii 2008. Continuous-wave and Q-switched microchip laser performance of Yb:Y3Sc2Al3O12 crystals. Optics Express, 16(8): 5241-5251.

36. J. Dong*, A. Shirakawa, K. Ueda 2008. A crystalline-orientation self-selected linearly polarized Yb:Y3Al5O12 microchip laser. Applied Physics Letters, 93(10): 101105.

37. P. Becker, B. Van Der Wolf, L. Bohaty, J. Dong, A.A. Kaminskii 2008. Monoclinic LaBO2MoO4:Nd3+ - a new SE- and (c(2) + c(3))-active crystal for multifunctional lasers. Laser Physics Letters, 5(10): 737-745.

38. J.L. Li, J. Dong, M. Mitsurua, A. Shirakawa, K. Ueda 2007. Transient temperature profile in the gain medium of CW- and end-pumped passively Q-switched microchip laser. Optics Communications, 270(1): 63-67.

39. A.A. Kaminskii, L. Bohaty, P. Becker, J. Liebertz, L. Bayarjargal, J. Hanuza, H.J. Eichler, H. Rhee, J. Dong 2007. High-order stimulated Raman scattering and cascaded nonlinear lasing effects in crystals of (c(3)-> c(2))-active orthorhombic PbB4O7. Laser Physics Letters, 4(9): 660-667.

40. J. Dong*, K.I. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, A.A. Kaminskii 2007. Composite Yb:YAG/Cr4+:YAG ceramics picosecond microchip lasers. Optics Express, 15(22): 14516-14523.

41. J. Dong*, K.I. Ueda, A.A. Kaminskii 2007. Efficient passively Q-switched Yb:LuAG microchip laser. Optics Letters, 32(22): 3266-3268.

42. J. Dong*, A. Shirakawa, K.I. Ueda, H. Yagi, T. Yanagitani, A.A. Kaminskii 2007. Near-diffraction-limited passively Q-switched Yb:Y3Al5O12 ceramic lasers with peak power > 150 kW. Applied Physics Letters, 90(13): 131105.

43. J. Dong*, A. Shirakawa, K.I. Ueda, H. Yagi, T. Yanagitani, A.A. Kaminskii 2007. Laser-diode pumped heavy-doped Yb:YAG ceramic lasers. Optics Letters, 32(13): 1890-1892.

44. J. Dong*, A. Shirakawa, K.I. Ueda, A.A. Kaminskii 2007. Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature - Part II: Theoretical modeling. Applied Physics B-Lasers and Optics, 89(2-3): 367-376.

45. J. Dong*, A. Shirakawa, K.I. Ueda, A.A. Kaminskii 2007. Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature - Part I: Experiments. Applied Physics B-Lasers and Optics, 89(2-3): 359-365.

46. J. Dong*, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A.A. Kaminskii 2007. Ytterbium and chromium doped composite Y3Al5O12 ceramics self-Q-switched laser. Applied Physics Letters, 90(19): 191106.

47. J. Dong*, A. Shirakawa, K. Ueda 2007. Switchable pulses generation in passively Q-switched multi longitudinal-mode microchip laser. Laser Physics Letters, 4(2): 109-116.

48. S.Z. Zhao, A. Rapaport, J. Dong, B. Chen, P.Z. Deng, M. Bass 2006. Temperature dependence of the 1.064-m stimulated emission cross-section of Cr:Nd:YAG crystal. Optics and Laser Technology, 38(8): 645-648.

49. J.L. Li, K. Ueda, J. Dong, M. Musha, A. Shirakawa 2006. Maximum value of the pulse energy of a passively Q-switched laser as a function of the pump power. Applied Optics, 45(21): 5377-5384.

50. D. Kouznetsov, J.F. Bisson, J. Dong, K.I. Ueda 2006. Surface loss limit of the power scaling of a thin-disk laser. Journal of the Optical Society of America B-Optical Physics, 23(6): 1074-1082.

51. J. Dong*, K.I. Ueda 2006. Observation of repetitively nanosecond pulse-width transverse patterns in microchip self-Q-switched laser. Physical Review A, 73(5): 053824.

52. J. Dong*, A. Shirakawa, K.I. Ueda 2006. Antiphase dynamics of sub-nanosecond microchip Cr,Yb:YAG self-Q-switched multimode laser. European Physical Journal D, 39(1): 101-106.

53. J. Dong*, A. Shirakawa, K.I. Ueda 2006. Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser. Applied Physics B-Lasers and Optics, 85(4): 513-518.

54. J. Dong*, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A.A. Kaminskii 2006. Efficient Yb3+:Y3Al5O12 ceramic microchip lasers. Applied Physics Letters, 89(9): 091114.

55. J. Dong*, A. Shirakawa, K. Ueda, J. Xu, P.Z. Deng 2006. Efficient laser oscillation of Yb:Y3Al5O12 single crystal grown by temperature gradient technique. Applied Physics Letters, 88(16): 161115.

56. J. Dong*, A. Shirakawa, K. Takaichi, K. Ueda, H. Yagi, T. Yanagitani, A.A. Kaminskii 2006. All-ceramic passively Q-switched Yb:YAG/Cr4+:YAG microchip laser. Electronics Letters, 42(20): 1154-1156.

57. S.Z. Zhao, A. Rapaport, J. Dong, B. Chen, P.Z. Deng, M. Bass 2005. Temperature dependence of the 1.03 m stimulated emission cross section of Cr:Yb:YAG crystal. Optical Materials, 27(8): 1329-1332.

58. S. Huang, Y. Feng, J. Dong, A. Shirakawa, M. Musha, K. Ueda 2005. 1083 nm single frequency ytterbium doped fiber laser. Laser Physics Letters, 2(10): 498-501.

59. J. Dong*, K. Ueda 2005. Temperature-tuning Yb:YAG microchip lasers. Laser Physics Letters, 2(9): 429-436.

60. J. Dong*, K. Ueda 2005. Longitudinal-mode competition induced instabilities of Cr4+,Nd3+:Y3Al5O12 self-Q-switched two-mode laser. Applied Physics Letters, 87(15): 151102.

61. J. Dong*, A. Shirakawa, K. Ueda 2005. Numerical simulation of a diode-laser-pumped self-Q-switched Cr,Yb:YAG microchip laser. Optical Review, 12(3): 170-178.

62. J. Dong*, A. Shirakawa, S. Huang, Y. Feng, K. Takaichi, M. Musha, K. Ueda, A.A. Kaminskii 2005. Stable laser-diode pumped microchip sub-nanosecond Cr,Yb:YAG self-Q-switched laser. Laser Physics Letters, 2(8): 387-391.

63. J. Dong*, A. Rapaport, M. Bass, F. Szipocs, K. Ueda 2005. Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals. Physica Status Solidi a-Applications and Materials Science, 202(13): 2565-2573.

64. J. Dong*, J. Lu, A. Shirakawa, K. Ueda 2005. Optimization of the laser performance in Nd3+:YAG ceramic microchip lasers. Applied Physics B-Lasers and Optics, 80(1): 39-43.

65. J. Dong*, J.L. Li, S.H. Huang, A. Shirakawa, K. Ueda 2005. Multi-longitudinal-mode oscillation of self-Q-switched Cr,Yb:YAG laser with a plano-concave resonator. Optics Communications, 256(1-3): 158-165.

66. M. Bass, J. Dong 2005. Properties of diode laser pumps for high-power solid-state lasers. IEEE Journal of Quantum Electronics, 41(2): 183-186.

67. J. Dong*, J.R. Lu, K. Ueda 2004. Experiments and numerical simulation of a diode-laser-pumped Cr,Nd:YAG self-Q-switched laser. Journal of the Optical Society of America B-Optical Physics, 21(12): 2130-2136.

68. J. Dong*, P.Z. Deng 2004. Reply to comments on "Ti:sapphire crystal used in ultrafast lasers and amplifiers". Journal of Crystal Growth, 269(2-4): 641-642.

69. J. Dong*, P.Z. Deng 2004. Ti:sapphire crystal used in ultrafast lasers and amplifiers. Journal of Crystal Growth, 261(4): 514-519.

70. J. Dong*, M. Bass, C. Walters 2004. Temperature-dependent stimulated-emission cross section and concentration quenching in Nd3+-doped phosphate glasses. Journal of the Optical Society of America B-Optical Physics, 21(2): 454-457.

71. J. Dong*, P.Z. Deng 2003. Laser performance of monolithic Cr,Nd:YAG self-Q-switched laser. Optics Communications, 220(4-6): 425-431.

72. J. Dong*, P.Z. Deng 2003. The effect of Cr concentration on emission cross-section and fluorescence lifetime in Cr,Yb:YAG crystal. Journal of Luminescence, 104(1-2): 151-158.

73. J. Dong*, P.Z. Deng 2003. Temperature dependent emission cross-section and fluorescence lifetime of Cr,Yb:YAG crystals. Journal of Physics and Chemistry of Solids, 64(7): 1163-1171.

74. J. Dong*, M. Bass, Y.L. Mao, P.Z. Deng, F.X. Gan 2003. Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet. Journal of the Optical Society of America B-Optical Physics, 20(9): 1975-1979.

75. J. Dong* 2003. Numerical modeling of CW-pumped repetitively passively Q-switched Yb:YAG lasers with Cr:YAG as saturable absorber. Optics Communications, 226(1-6): 337-344.

76. H.W. Qiu, P.Z. Yang, J. Dong, P.Z. Deng, J. Xu, W. Chen 2002. The influence of Yb concentration on laser crystal Yb:YAG. Materials Letters, 55(1-2): 1-7.

77. Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Deng, J. Xu, J. Dong, W. Chen 2002. Passively Q-switched diode-pumped Yb:YAG laser using Cr4+-doped garnets. Optical Materials, 19(4): 403-413.

78. J. Dong*, P.Z. Deng, Y.P. Liu, Y.H. Zhang, G.S. Huang, F.X. Gan 2002. Performance of the self-Q-switched Cr,Yb:YAG laser. Chinese Physics Letters, 19(3): 342-344.

79. J. Dong*, P.Z. Deng, M. Bass 2002. Cr,Nd:YAG self-Q-switched laser with high efficiency output. Optics and Laser Technology, 34(7): 589-594.

80. J. Dong*, P.Z. Deng, Y.H. Zhang, Y.P. Liu, J. Xu, W. Chen 2001. Ti:sapphire laser pumped Cr4+,Nd3+:YAG self-Q-switched microchip laser. Journal of Inorganic Materials, 16(1): 139-142.

81. J. Dong*, P.H. Deng, Y.P. Liu, Y.H. Zhang, J. Xu, W. Chen, X.L. Xie 2001. Passively Q-switched Yb:YAG laser with Cr4+:YAG as the saturable absorber. Applied Optics, 40(24): 4303-4307.

82. J. Dong*, P. Deng, F. Gan, Y. Urata, R. Hua, S. Wada, H. Tashiro 2001. Highly doped Nd:YAG crystal used for microchip lasers. Optics Communications, 197(4-6): 413-418.

83. J. Dong*, J.G. Zhou, H. Wang, J.T. Ling, L.F. Shi 2000. An investigation of pitting initiation mechanism of 1Cr12Ni2W1Mo1V steel after induction hardening. Journal of Materials Science, 35(11): 2653-2657.

84. J. Dong*, P.Z. Deng, Y.H. Zhang, Y.P. Liu, J. Xu, W. Chen 2000. Ti:sapphire laser-pumped self-Q-switched Cr,Nd:YAG laser with single-longitudinal-mode output. Microwave and Optical Technology Letters, 26(2): 124-127.

85. J. Dong*, P.Z. Deng, J. Xu 2000. Spectral and luminescence properties of Cr4+ and Yb3+ ions in yttrium aluminum garnet (YAG). Optical Materials, 14(2): 109-113.

86. J. Dong*, P.Z. Deng, Y.T. Lu, Y.H. Zhang, Y.P. Liu, J. Xu, W. Chen 2000. Laser-diode-pumped Cr4+,Nd3+:YAG with self-Q-switched laser output of 1.4 W. Optics Letters, 25(15): 1101-1103.

87. J. Dong*, P.Z. Deng, J. Xu 1999. The growth of Cr4+,Yb3+:yttrium aluminum garnet (YAG) crystal and its absorption spectra properties. Journal of Crystal Growth, 203(1-2): 163-167.

发表专著、专利和发明:

1. Jun Dong, Ken-ichi Ueda, Hideki Yagi, and Alexander A Kaminskii, “Concentration-Dependent Laser Performance of Yb:YAG Ceramics and Passively Q-switched Yb:YAG/Cr,Ca:YAG Lasers”, Chapter 1 in Advances in Solid-State Lasers: Development and Applications, Edited by Mikhail Grishin, Intech, India, 2010.

2. Jun Dong, Michael Bass, “Ring geometry diode laser arrays and method”, US patent, US 7,126,974 B1 (Oct. 4, 2006).

3. Jun Dong, “Crystalline orientation selected polarization manipulated microchip lasers”, Chinese patent, CN 102074886A (May 25, 2010)

4. Jun Dong, Jian Ma, Ying Cheng, Yingying Ren, “Yb:YAG/Cr,Yb:YAG self-Q-switched lasers”, Chinese patent, CN 102545027A (July 4, 2012).

Copyright © 2012 厦门大学电子工程系�