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Abstract

The fluorescence emission spectra of Cr:Nd:YAG crystal are measured and the effective stimulated emission cross-section of the
crystal is obtained from —80 to +80 °C. A linear temperature dependence between —80 and + 80 °C is reported for the 1.064-um

peak stimulated emission cross-section of Cr:Nd:YAG crystal.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Neodymium-doped crystal of yttrium aluminum
garnet (Nd:YAG) is the most commonly used active
media for high average power solid state laser applica-
tions. Especially, by using Cr, Nd co-doped yttrium
aluminum garnet (Cr:Nd:YAG) crystal, the self-Q-
switched [1-10] and self-mode-locking Cr:Nd:YAG
[11] lasers have been achieved. Generally speaking,
optically pumped solid-state lasers using Cr, Nd:YAG
may have to operate over a wide range of temperatures.
Optical elements in a typical laser resonator (e.g.,
mirrors, beam splitters, etc.) show no variation of
optical properties over a wide range of temperatures.
However, the stimulated emission cross-section of the
laser transition will depend on temperature and the
variation with temperature will affect the lasing perfor-
mance characteristics, such as threshold, output power,
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pulse width, etc. The room temperature spectrum
properties and stimulated emission cross-section of
Nd:YAG crystals have been studied [12,13]. The small-
signal gain characteristics of Nd:YAG crystal over the
temperature ranges of 250-500 K and the threshold, the
slope efficiency of Nd:YAG laser over the temperature
ranges of 80-300 K have been given [14,15]. Recently, A.
Rapaport presented the temperature dependence of the
1.06-um stimulated emission cross-section of neody-
mium in YAG and GSGG crystals [16]. Moreover,
Dong studied the temperature-dependent stimulated-
emission cross-section and concentration quenching in
Nd’®*-doped phosphate glasses [17]. However, no
systematic study of the variation of the stimulated
emission cross-section of Cr, Nd co-doped YAG
crystal could be found over the range of tempera-
tures of interest for practical applications. The present
paper gives the experimental evidence for a linear
temperature dependence of the 1.064-um peak stimu-
lated emission cross-section of Cr:Nd:YAG crystal
between —80 and + 80 °C.
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2. Experiments

The effective stimulated emission cross-section of
laser crystal Cr:Nd:YAG at various temperatures can be
calculated by recording the entire emission spectrum of
the excited crystal and measuring the emission lifetime
of the crystal at different temperatures. The experi-
mental setup is shown in Fig. 1. The emission spectra of
Cr:Nd:YAG crystal are measured at 850-1500 nm The
excitation source is a fiber-coupled diode laser operating
at 804nm and the temperature of diode laser is
controlled by an automatic temperature controller.
The size of Cr:Nd:YAG crystal with co-doped
0.01at% Cr and 0.5at% Nd is 5Smm x 5mm x 1 mm,
and located inside a temperature controller (—80 to
+80°C). Below room temperature, the temperature-
controlled compressed helium cryostat is used to cool
samples, while above the room temperature, a heating
ribbon is wrapped around the sample holder and the
temperature is monitored using a calibrated tempera-
ture sensor. The light of a diode laser is focused to
the Cr:Nd:YAG crystal surface (Smm x 1.0mm) with
the index gradient lens. The excitation signal is
monitored during the experiment with a silicon (Si)
detector. The emission fluorescence of the crystal is
focused with a lens to Jarell-Ash monochromator. An
indium gallium arsenide (InGaAs) detector located at
the output slit of the 25 cm focal length monochromator
is used to detect the fluorescence emission intensity.
With 50-pm slits, the resolution of this detection system
is about 0.4 nm.

The experimental arrangement for the emission life-
time measurement is very similar to the above setup for
the emission spectrum measurement, except that the
excitation source is a tunable optical parametric
oscillator (Quanta Ray MOPO-SL, pulse width 5ns)
tuned to 804 nm. In addition, the detection wavelength
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of Jarell-Ash monochromator is fixed at 1.064 pm and a
photo-multiplier tube is connected to the output slit of
the monochromator to detect the intensity of the
fluorescence emission. The decay curves of the fluores-
cence are recorded with a storage oscilloscope
(TDS694C) and a computer-controlled data acquisition
system.

3. Experimental results

The ytterbium emission from Cr:Nd:YAG crystal
is not polarization dependent, so the emission spectra
obtained could be used to calculate the effec-
tive stimulated emission cross-section of an Nd** ion
from the manifold 4F3/274IH/2 transition in Cr:Nd:
YAG by applying the Fuchtbauer—Ladenburg (F-L)
formula [18]:

1 Xy I

o) =g e T1(yidi

(1
where 4 is the wavelength, a(2) is the effective stimulated
emission cross-section at wavelength /, 5 is the quantum
efficiency (assumed to be close to 1 for Cr:Nd:YAG), n
is the index of refraction of the material, ¢ is the speed of
light in vacuum, and 7t is the fluorescent lifetime of the
upper laser level, /(1) is the fluorescent intensity at
wavelength /.

In order to calculate the effective stimulated emission
cross-section of crystal with Eq. (1), the fluorescent
lifetime © must be given. For Cr:Nd:YAG crystal at
1.064 um, from the detected decay curve of the
fluorescent intensity at 1.064 pm, the fluorescent lifetime
can be obtained with a fit to Forster—Dexter model
[19-21]. Fig. 2 is the detected decay curve of the
fluorescent intensity at room temperature. A fit to
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Fig. 1. Experimental setup of fluorescent emission spectrum at different temperature.



S. Zhao et al. | Optics & Laser Technology 38 (2006) 645-648 647

Forster—Dexter model shows that the fluorescent life-
time is 220pus. We measure the fluorescent lifetime
of Cr:Nd:YAG crystal at different temperature (from
—80 to +80°C). The results show that the fluo-
rescent lifetime varies little with the temperature at the
above temperature ranges. Therefore, we fix its value at
220 us when evaluating Eq. (1). Similarly, for
Cr:Nd:YAG crystal, the index of refraction of the
material varies very little over the temperature ranges
(—80 to +80°C), so we use a constant value of 1.82 in
Eq. (1).

The fluorescence emission spectrum of Cr:Nd:YAG
crystal at room temperature is shown in Fig. 3.
According to the I(4) in Fig. 3 and the related
parameters, the calculated effective stimulated emission
cross-sections by using Eq. (1) are given in Fig. 4. The
figure shows that the peak value at 1.064um is
2.28 x 107" cm?
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Fig. 2. Fluorescent decay curve of Cr:Nd:YAG crystal at room
temperature.
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Fig. 3. Fluorescent emission spectrum of Cr:Nd:YAG crystal at room
temperature.
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Fig. 4. Effective stimulated emission cross-section of Cr:Nd:YAG
crystal at room temperature.
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Fig. 5. Effective stimulated emission cross-section versus temperature.

By adjusting the temperature controller system of
Cr:Nd:YAG crystal, the fluorescence emission spectra at
various temperatures (—80 to + 80 °C) can be measured.
Using Eq. (1), we can calculate the effective stimulated
emission cross-section of Cr:Nd:YAG crystal at
1.064 um over various temperature ranges. Fig. 5 shows
the effective stimulated emission cross-section of Cr:
Yb:YAG crystal at 1.064 um as a function of tempera-
ture. The points are the calculated values and the line is
a linear fit. The figure shows that the effective stimulated
emission cross-section of Cr:Nd:YAG crystal at
1.064 um varies linearly with temperature with a
negative slope of 4.37 x 107**cm?/°C. If T stands for
temperature in °C, the effective stimulated emission
cross-section ¢ (cm?) can be expressed as

0=(232-437x1072T) x 107%. )
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4. Conclusion

The fluorescent emission spectra and radiative lifetime
of Cr:Nd:YAG crystal from —80 to +80°C are
measured and the peak stimulated emission cross-
section at 1.064um for different temperatures are
calculated. A linear temperature dependence between
—80 and +80°C is given for the peak stimulated
emission cross-section of Cr’" jons and Nd* " ions co-
doped YAG.
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