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Abstract

The fluorescence emission spectra of Cr:Nd:YAG crystal are measured and the effective stimulated emission cross-section of the

crystal is obtained from �80 to +80 1C. A linear temperature dependence between �80 and +80 1C is reported for the 1.064-mm
peak stimulated emission cross-section of Cr:Nd:YAG crystal.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Neodymium-doped crystal of yttrium aluminum
garnet (Nd:YAG) is the most commonly used active
media for high average power solid state laser applica-
tions. Especially, by using Cr, Nd co-doped yttrium
aluminum garnet (Cr:Nd:YAG) crystal, the self-Q-
switched [1–10] and self-mode-locking Cr:Nd:YAG
[11] lasers have been achieved. Generally speaking,
optically pumped solid-state lasers using Cr, Nd:YAG
may have to operate over a wide range of temperatures.
Optical elements in a typical laser resonator (e.g.,
mirrors, beam splitters, etc.) show no variation of
optical properties over a wide range of temperatures.
However, the stimulated emission cross-section of the
laser transition will depend on temperature and the
variation with temperature will affect the lasing perfor-
mance characteristics, such as threshold, output power,
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pulse width, etc. The room temperature spectrum
properties and stimulated emission cross-section of
Nd:YAG crystals have been studied [12,13]. The small-
signal gain characteristics of Nd:YAG crystal over the
temperature ranges of 250–500K and the threshold, the
slope efficiency of Nd:YAG laser over the temperature
ranges of 80–300K have been given [14,15]. Recently, A.
Rapaport presented the temperature dependence of the
1.06-mm stimulated emission cross-section of neody-
mium in YAG and GSGG crystals [16]. Moreover,
Dong studied the temperature-dependent stimulated-
emission cross-section and concentration quenching in
Nd3+-doped phosphate glasses [17]. However, no
systematic study of the variation of the stimulated
emission cross-section of Cr, Nd co-doped YAG
crystal could be found over the range of tempera-
tures of interest for practical applications. The present
paper gives the experimental evidence for a linear
temperature dependence of the 1.064-mm peak stimu-
lated emission cross-section of Cr:Nd:YAG crystal
between �80 and +80 1C.
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2. Experiments

The effective stimulated emission cross-section of
laser crystal Cr:Nd:YAG at various temperatures can be
calculated by recording the entire emission spectrum of
the excited crystal and measuring the emission lifetime
of the crystal at different temperatures. The experi-
mental setup is shown in Fig. 1. The emission spectra of
Cr:Nd:YAG crystal are measured at 850–1500 nm The
excitation source is a fiber-coupled diode laser operating
at 804 nm and the temperature of diode laser is
controlled by an automatic temperature controller.
The size of Cr:Nd:YAG crystal with co-doped
0.01 at% Cr and 0.5 at% Nd is 5mm� 5mm� 1mm,
and located inside a temperature controller (�80 to
+80 1C). Below room temperature, the temperature-
controlled compressed helium cryostat is used to cool
samples, while above the room temperature, a heating
ribbon is wrapped around the sample holder and the
temperature is monitored using a calibrated tempera-
ture sensor. The light of a diode laser is focused to
the Cr:Nd:YAG crystal surface (5mm� 1.0mm) with
the index gradient lens. The excitation signal is
monitored during the experiment with a silicon (Si)
detector. The emission fluorescence of the crystal is
focused with a lens to Jarell–Ash monochromator. An
indium gallium arsenide (InGaAs) detector located at
the output slit of the 25 cm focal length monochromator
is used to detect the fluorescence emission intensity.
With 50-mm slits, the resolution of this detection system
is about 0.4 nm.

The experimental arrangement for the emission life-
time measurement is very similar to the above setup for
the emission spectrum measurement, except that the
excitation source is a tunable optical parametric
oscillator (Quanta Ray MOPO-SL, pulse width 5 ns)
tuned to 804 nm. In addition, the detection wavelength
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Fig. 1. Experimental setup of fluorescent emi
of Jarell–Ash monochromator is fixed at 1.064 mm and a
photo-multiplier tube is connected to the output slit of
the monochromator to detect the intensity of the
fluorescence emission. The decay curves of the fluores-
cence are recorded with a storage oscilloscope
(TDS694C) and a computer-controlled data acquisition
system.
3. Experimental results

The ytterbium emission from Cr:Nd:YAG crystal
is not polarization dependent, so the emission spectra
obtained could be used to calculate the effec-
tive stimulated emission cross-section of an Nd3+ ion
from the manifold 4F3/2–

4I11/2 transition in Cr:Nd:
YAG by applying the Fuchtbauer–Ladenburg (F–L)
formula [18]:

sðlÞ ¼
1

8p
l5Z
n2ct

IðlÞ
R

IðlÞl dl
, (1)

where l is the wavelength, sðlÞ is the effective stimulated
emission cross-section at wavelength l; Z is the quantum
efficiency (assumed to be close to 1 for Cr:Nd:YAG), n

is the index of refraction of the material, c is the speed of
light in vacuum, and t is the fluorescent lifetime of the
upper laser level, IðlÞ is the fluorescent intensity at
wavelength l:

In order to calculate the effective stimulated emission
cross-section of crystal with Eq. (1), the fluorescent
lifetime t must be given. For Cr:Nd:YAG crystal at
1.064 mm, from the detected decay curve of the
fluorescent intensity at 1.064 mm, the fluorescent lifetime
can be obtained with a fit to Forster–Dexter model
[19–21]. Fig. 2 is the detected decay curve of the
fluorescent intensity at room temperature. A fit to
or
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Fig. 4. Effective stimulated emission cross-section of Cr:Nd:YAG

crystal at room temperature.

S. Zhao et al. / Optics & Laser Technology 38 (2006) 645–648 647
Forster–Dexter model shows that the fluorescent life-
time is 220 ms. We measure the fluorescent lifetime
of Cr:Nd:YAG crystal at different temperature (from
�80 to +80 1C). The results show that the fluo-
rescent lifetime varies little with the temperature at the
above temperature ranges. Therefore, we fix its value at
220 ms when evaluating Eq. (1). Similarly, for
Cr:Nd:YAG crystal, the index of refraction of the
material varies very little over the temperature ranges
(�80 to +80 1C), so we use a constant value of 1.82 in
Eq. (1).

The fluorescence emission spectrum of Cr:Nd:YAG
crystal at room temperature is shown in Fig. 3.
According to the IðlÞ in Fig. 3 and the related
parameters, the calculated effective stimulated emission
cross-sections by using Eq. (1) are given in Fig. 4. The
figure shows that the peak value at 1.064 mm is
2.28� 10�19 cm2.
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Fig. 2. Fluorescent decay curve of Cr:Nd:YAG crystal at room

temperature.
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Fig. 3. Fluorescent emission spectrum of Cr:Nd:YAG crystal at room

temperature.
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Fig. 5. Effective stimulated emission cross-section versus temperature.
By adjusting the temperature controller system of
Cr:Nd:YAG crystal, the fluorescence emission spectra at
various temperatures (�80 to +80 1C) can be measured.
Using Eq. (1), we can calculate the effective stimulated
emission cross-section of Cr:Nd:YAG crystal at
1.064 mm over various temperature ranges. Fig. 5 shows
the effective stimulated emission cross-section of Cr:
Yb:YAG crystal at 1.064 mm as a function of tempera-
ture. The points are the calculated values and the line is
a linear fit. The figure shows that the effective stimulated
emission cross-section of Cr:Nd:YAG crystal at
1.064 mm varies linearly with temperature with a
negative slope of 4.37� 10�22 cm2/1C. If T stands for
temperature in 1C, the effective stimulated emission
cross-section s (cm2) can be expressed as

s ¼ ð2:32� 4:37� 10�2 TÞ � 10�20. (2)



ARTICLE IN PRESS
S. Zhao et al. / Optics & Laser Technology 38 (2006) 645–648648
4. Conclusion

The fluorescent emission spectra and radiative lifetime
of Cr:Nd:YAG crystal from �80 to +80 1C are
measured and the peak stimulated emission cross-
section at 1.064 mm for different temperatures are
calculated. A linear temperature dependence between
�80 and +80 1C is given for the peak stimulated
emission cross-section of Cr3+ ions and Nd3+ ions co-
doped YAG.
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