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 1 Introduction In the last decade solid-state gain ma-
terials for laser physics and their applications are increas-
ingly employed in the crystalline ceramic form [1]. With 
these novel materials very impressive laser advances have 
already been made, e.g. the achievement with laser-diode 
pumping of about 100 kW output CW power of 10

h
O -garnet 

structure ceramics of Nd3+ :Y3Al5O12 laser [2] (
4F3/2 → 4I11/2 

generation intermanifold transition) and efficient sub-50 fs 
one-micrometer ytterbium ceramic lasers (2F5/2 → 2F7/2) on 
the base of rare-earth sesquioxides with the 7

h
T -bixbyite 

structure [3]). Recently, it was found that the grain bounda-
ries in these Konoshima Co. ceramics improved mechani-
cal toughness and microhardness to the same laser-host 
crystals (see, e.g. [4]). Another Japanese company (Murata 
Manufacturing) recently developed a highly transparent ce-
ramics (“Lumicera type-Z”) for high-refractive optical 
lenses [5], offering “disordered” perovskite 5

h
O -structure. 

They are also promising host materials for trivalent lantha-
nide (Ln3+) and transition-metal (TM) lasants. The walls of 
nano- or micro-size grains of all the above-mentioned ce-
ramics are surface defects where the centrosymmetric cu-
bic crystallographic nature is broken. Therefore, in these 

bulk ceramic materials having high concentration of grain-
boundary walls both cubic χ

(3)- and quadratic χ
(2)-

nonlinearities should be manifested under high peak power 
of laser excitation, namely stimulated Raman scattering 
(SRS), low intensity non-phase-matched third- and second-
harmonic generation (THG and SHG), as well as multi-
wavelength parametric mixing processes. Quite recently, 
these effects were observed [6] in two host-ceramics Sc2O3 
and Lu2O3 with ordered structure for Ln

3+ lasants (Table 1). 
The goal of this work was the observation of all possible 
nonlinear-laser effects related to the χ

(3)- and χ
(2)-

nonlinearities in titled ceramics Ba(Mg,Zr,Ta)O3 (“Lumi-
cera type-Z”) under one-micrometer picosecond laser 
pumping. For the purpose of clarity about current research 
on nonlinear-laser interactions in widely transparent crys-
talline ceramics, in Table 1 are included also the known to 
us published results in this field.  
 
 2 Ceramic fabrication and its some properties 
High-purity BaCO3, ZrO2, MgCO3, and Ta2O5 powders 
were mixed with distilled H2O in a ball mill and yielded  
a mixture of Ba(Mg,Zr,Ta)O3. After the mixture was dried  

We report on laser-induced χ(3)- and χ(2)-nonlinear generation 

in novel optical ceramics, Ba(Mg,Zr,Ta)O3, with “disordered” 
5

h
O -cubic  structure,  namely  high-order  Stokes  and  anti-

 Stokes lasing, third- and second-harmonic generation under 

one-micrometer picosecond pumping. Microhardness and 

fracture toughness were also measured. 
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Table 1 Nonlinear-laser effects in ceramics on the base of cubic 

oxides. 

SRS generation  ceramics space 

groupa) 

Ln3+ 

lasant 

nonlinear-

laser effect 
ωSRS, 

cm–1 b) 

St1

ssR
,g  

cm GW–1 c) 

Sc2O3 
7

h
T  Yb3+ SRS, SHG, 

THG, self-

FM(SRS)d) 

≈419 ≈0.72 [7] 

Y2O3 
7

h
T  Nd3+, 

Yb3+ 

SRS ≈378 ≈0.4 [8] 

Y3Al5O12 
10

h
O  Nd3+, 

Er3+, 

Yb3+ 

SRS ≈370 ≈0.1 [9] 

Ba(Mg,Zr,Ta)O3

e)

 
5

h
O  f)

 SRS, SHG, 

THG, self-

FM(SRS)d) 

≈735 ≈0.18 

Lu2O3 
7

h
T  Nd3+, 

Yb3+ 

SRS, SHG, 

THG, self-

FM(SRS)d) 

≈392 ≈0.3 [10] 

a)
 Grains of the ceramics are randomly oriented nano- and micro-size sin-

gle crystals. 
b)
 ωSRS is the energy of SRS-promoting vibration mode.

 

c)
 St1

ssR
g  is the steady-state Raman gain coefficient for the first Stokes lasing 

under one-micrometer picosecond pumping radiation from 

Nd
3+
:Y3Al5O12 laser.

 

d)
 Self-FM(SRS), i.e. self-sum(difference) frequency multiwavelength pa-

rametric mixing of the arising SRS lasing and pumping radiation. 
e)
 “Lumicera type-Z” ceramics in microcrystalline grains of which the B′ 

and B″ octahedral sites are randomly occupied by unlike-valence cations 

Mg
2+
, Zr

4+
, and Ta

5+
, i.e. in this material is realized the second law  

of crystal-field disorder [11]. 
f)
 This ceramics is the attractive disordered host-materials for Ln

3+
 lasants 

(e.g. Nd
3+
, Yb

3+
, and TM laser active ions). 

 
 
and calcined, the calcined compact was milled in a ball 
mill with distilled H2O and an organic binder for several 
hours. The milled compact was dried and granulated, and it 
yielded ceramic material powder. The powder was melted 
at a pressure of 2000 kg cm–2, and it yielded a disk-shaped 
ceramic green body with 35 mm diameter and several mil-
limeters thickness. The green body was fired at a tempera-
ture higher than 1500 °C in an oxygen atmosphere whose 
O2 concentration was higher than that of air. From the sin-
tered body mirror-polished samples were fabricated in the 
form of bars (≈20 × 6 × 5 mm3) with mirror-polished ends 
for nonlinear-laser experiments and ≈2 mm thick plates 
(with cross section 6 × 5 mm2) polished to the 14th class of 
surface finish for an investigation of mechanical character-
istics. 
 The microhardness of Ba(Mg,Zr,Ta)O3 ceramics was 
estimated using the well-known relation H = k(P/d 2) (see, 
e.g. [12]), where k is the coefficient dependent on the in-
denter shape (equal to 1.854 for our case) and d is the di-
agonal of the indentation. The experiment was made by the 
use a microhardness gauge (PMT-3 type) with a diamond 
Vickers indenter. Measurements showed that for the ce-
ramics studied H ≈ 950 kg mm–2. 

 Some known physical properties of a fine-grained 
Ba(Mg,Zr,Ta)O3 ceramics are given in Table 2. 
 
 3 Multiwavelength Raman-induced nonlinear 
lasing For the observation of all possible χ(3)- and χ(2)-
nonlinear cascaded lasing in “cubic” Ba(Mg,Zr,Ta)O3 ce-
ramics with “disordered” 5

h
O -structure in its wide optical 

transmission region we carried out single-pass (cavity-free) 
laser experiments with the use of Nd3+ :Y3Al5O12 picosec-
ond (τp ≈ 100 ps) radiation at λf = 1.06415 µm wavelength. 
The nearly Gaussian profile pumping beam is focused into 
the ceramic sample with a lens ( f = 250 mm), resulting in a 
beam-waist diameter of about 160 µm. The spectral com-
position of its nonlinear lasing emission was dispersed 
with a grating monochromator (McPherson Model 270 in 
Czerny–Turner arrangement) and recorded by a spectro-
metric SCMA system equipped with two Hamamatsu  
linear image sensors Si-CCD(3923-10224Q) and InGaAs-
CCD (G904-512D) providing sufficient spectral sensitivity 
from the UV to ≈1.7 µm (see inset in Fig. 4). In conse-
quence of the more careful matching of an excitation 
scheme and new Si-CCD detector for UV and visible re-
gions compared to preliminary SRS measurements with 
this ceramic [16], we significantly widened its anti-Stokes 
wing generation (Figs. 4a and b) and observed nonlinear-
laser χ(3)- and χ(2)-emission, namely expected SHG, as well 
as THG and its UV-surrounding χ(3)-cascaded Stokes and 
anti-Stokes lasing components. For reliable registration of 
these weak nonlinear laser effects we significant decreased 
(by using corresponding filters and other experimental 
ruses) the unwanted (saturated) influence of strong one-
micrometer pump radiation and intense Stokes and anti-
Stokes bands emission on the Si-CCD sensor and thus sig-
nificantly enhanced its effective sensitivity in the region of 
harmonic generation. The results of these measurements 
are shown in Figs. 4c and d. Whereas all observed χ(3)-
nonlinear components, including in the UV part of the SRS 
spectrum, are sufficiently understandable, while the ob-
served SHG needs to be investigated with great care. It 
should be noted here that very weak SHG could be associ-
ated also with induced χ(2)-nonlinearity (local mechanical 
stress) and with the resulting plasma in micro-interstices 
(pores). But, these possible reasons are not likely to take 
place in our case. 
 Under our steady-state (ss) pumping condition for 
Ba(Mg,Zr,Ta)O3 ceramics τp ≈ 100 ps � T2 = (π ∆νR)

–1  
≈ 0.3 ps (here, T2 is the phonon dephasing time of SRS-
promoting vibration transition and ∆νR ≈ 36 cm

–1 is the line 
width of the Raman shifted line related to this transition, 
see Fig. 5), we can also roughly estimate the steady-state 
Raman gain coefficient for its first-Stokes lasing compo-
nent at λSt1 = 1.1545 µm wavelength. To accomplish this, 
we restored to sufficiently tested method based on the 
well-known ratio [17] St1 thr

ssR p SRSg I l  ≈ 30 and comparative 
measurement of “threshold” pump intensity ( thr

pI ) of the 
confidently detectable first-Stokes lasing signals for our 
ceramics at λSt1 = 1.1545 µm and for selected reference
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Table 2 Some characteristics of Ba(Mg,Zr,Ta)O3 ceramics (“Lumicera type-Z”) a). 

characteristics  

space group 5

h
O Fm3m-  (No. 225)b) 

formula units per primitive cell Z
Br = 2 

site symmetry (SS) and coordination number (CN) 

of cationsc) 

Ba2+: SS − 43m (A – site), CN = 6 

Mg2+, Zr4+, Ta5+; SS – m3m  (B′ and B″ sites), CN = 6  

density, g cm–3 ≈7.5 [13] 

chemical composition, %d) Ba −21.49; Mg −4.75; Zr −5.41; Ta −9.41; O −53.55 

microhardness (Knoop scale), kg mm–2 H ≈ 950 

optical transparency range, µme) ≈0.32 −≈6.5 [14] 

refractive index [13]  n = 2.143 (λ = 0.435 µm); n = 2.104 (λ = 0.541 µm) (see also Fig. 3) 

abbe number [13] νd = 29.4 

nonlinearity χ(3) and χ(2) 

phonon spectrum extension, cm–1 ≈840 

energy of SRS-active mode, cm–1 ≈735 

line width of Raman shifted lines related to SRS-promoting  

vibration mode, cm–1 

∆νR ≈ 36 

steady-state Raman gain coefficient for “one-micrometer” 

first Stokes lasing, cm GW–1 

St1

ssR
,g  ≈ 0.18 

possible applications optical components [13], laser Raman frequency converters,  

laser host-material  

a)
 Using the ordered–disordered transformation mechanism, by introduction of Zr4+ ions in the 3

3d
D -perovskite type “ordered” Ba(Mg1/2Ta2/3)O3 com-

pound (see Fig. 1a) was obtained the 5

h
O -cubic “disordered” Ba(Mg,Zr.Ta)O3 compound (Fig. 1b). This compound was a basis for “Lumicera Z-type” 

ceramics fabrication [15]. 
b)
 Randomly oriented ceramic grains are micrometer-sized single crystals with 5

h
O -cubic perovskite structure (see Fig. 1). 

c)
 The B′ and B″ octahedral sites randomly occupy by unlike-valency cations Mg2+, Zr4+, and Ta5+.

 

d)
 Obtained by using electron scanning microscope JSM-7401F equipped with a device for X-ray microanalysis. The measurement was carried out in 

the point marked by a square in Fig. 2. In the ceramics, small amounts of other impurities are also present (≈5.39%), among them silicon (perhaps Si
4+
) 

as a required additive in a fabrication process.
 

e)
 See Fig. 3. 

 

 

Figure 1 (online colour at: www.pss-a.com) Sections of the crystal structure of (a) “ordered” 3

3d
D -perovskite type Ba(Mg1/2Ta2/3)O3 

single crystal and (b) “disordered” 5

h
O -cubic  Ba(Mg,Zr,Ta)O3 ceramics. The blue lines show the hexagonal and cubic structural  

units.  
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Figure 2 (online colour at: www.pss-a.com) Secondary electron 

image of a fracture of microcrystalline Ba(Mg,Zr,Ta)O3 ceramics. 

See also text. 

 

PbWO4 crystal with the equal SRS-active length (lSRS) at 
λSt1 = 1.1770 µm wavelength with the known value of the 

St1

ssR
g  coefficient (≈3.1 cm GW–1 [18]). We found that the 
measured threshold for ceramics is seventeen times higher 
than that of the tungstate crystal. This results in a value of 
the Raman gain coefficient for Ba(Mg,Zr,Ta)O3 ceramics 
not less than 0.18 cm GW–1. 
 The factor-group analysis predicts for the 5

h
O -primitive 

cell of our ceramics of 3NZBr = 30 degrees of vibration 
freedom, which are described in accordance with (see, e.g. 
[19]) by the irreducible representations (at k = 0): 
Γ30 = A1g + Eg + 2F2g + F1g + 5F1u + F2u. Among them the 
three first species (marked by the bold) are the Raman-
active modes; one F1u corresponds to a triply degenerate 
acoustical mode, and the remaining four species of this 
type are the IR-active optical vibrations; F1g and F2u are the 
silent modes. The spontaneous Raman (A1g + Eg + 2F2g)-
spectrum of Ba(Mg,Zr,Ta)O3 ceramics studied (shown in 
Fig. 5) has recorded in roughly the same excitation geome-
try that we employ for mentioned above SRS measure- 
 

Table 3 Spectral composition of χ(3)- and χ(2)-nonlinear laser 

generation in a Ba(Mg,Zr,Ta)O3 ceramic with picosecond 

Nd3+ :Y3Al5O12 laser pumping at fundamental wavelength 

λf = 1.06415 µm. 

χ(3)- and χ(2)-nonlinear laser lines 

wavelength, µma) lineb) possible line attributionc) 

0.3457 ASt1λTHG 2ωf + ωASt1 = 3ωf + ωSRS 

0.3547 λTHG 3ωf  

0.3642 St1λTHG 2ωf − ωSt1 = 3ωf − ωSRS 

0.3742 St2λTHG 2ωf − ωSRS = 3ωf − 2ωSRS 

0.53207 λSHG 2ωf 

0.7243 ASt6 ωf + 6ωSRS 

0.7650 ASt5 ωf + 5ωSRS 

0.8106 ASt4 ωf + 4ωSRS 

0.8619 ASt3 ωf + 3ωSRS 

0.9202 ASt2 ωf + 2ωSRS 

0.9870 ASt1 ωf + ωSRS 

1.06415 λf ωf 

1.1545 St1 ωf −ωSRS 

1.2615 St2 ωf −2ωSRS 

a)
 Measurement accuracy ±0.0003 µm. 

b)
 For example, the condition notation of cascaded five-wave parametric 

process at 0.3457 µm wavelength is connected with two quanta of pump-

ing (ωf) and one quantum of first anti-Stokes generation (ωf + ωSRS), i.e. 

can be considered as anti-Stokes component of the third harmonic genera-

tion. It is also possible that other five-wave mixing cascades act. 
c)
 ωSRS ≈ 735 cm

–1
. 

 
ments. As can be seen its general view is typical for Ra-
man spectra of crystalline materials with disordered struc-
ture. In this stage of our investigation the detailed interpre-
tation of this spectrum presents some problem due to lack 
of received X-ray data on the real distribution of unlike va-
lency cations among octahedral B′ and B″ crystallographic 
sizes. While, on the basis numerous results of vibronic 
studies of the 5

h
O -cubic perovskite-structure “disordered” 

crystalline materials (see, e.g. [20]), we tentative assumed 
that of intensive band at ≈735 cm–1 (which were related to 
the SRS-promoting vibration transition of the ceramics) 
may be due to the stretching B′–O–B″ vibration bonds. 
 

 

 

Figure 3 Wavelength dispersion of refrac-

tive index and transmission spectrum in the 

range from UV to the mid-IR with ≈1.5 mm 

(for UV–VIS–near-IR) and ≈0.6 mm thick 

polished plates without antireflection coating 

(see also [13]). 



1670 A. A. Kaminskii et al.: Nonlinear-laser χ(3)- and χ(2)-effects in Ba(Mg,Zr,Ta)O3 ceramics 

 

© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim  www.pss-a.com 

p
h

ys
ic

ap s sst
at

u
s

so
lid

i a

 

Figure 4 Fragments of χ(3)- and χ(2)-lasing spectrum of fine-grained Ba(Mg,Zr,Ta)O3 ceramics with pumping at λf = 1.06415 µm 

wavelength of a Nd3+ :Y3Al5O12 picosecond lasers and recorded by InGaAs-CCD sensor in the near-IR (fragment (a)) and by Si-CCD in 

the visible and UV regions (fragments (b), (c) and (d)), as well as spectral sensitivity (e) of the used Si- and InGaAs-CCD linear image 

sensors (data from Hamamatsu catalog). Parts (c) and (d) recorded under strong attenuation of one-micrometer pump and its near-IR 

intensive Stokes and anti-Stokes signals with different excitation levels. The wavelength of all lines is given in µm (the pump line is 

marked by an asterisk). Stokes and anti-Stokes components (see (a) and (b) fragments) related to SRS-promoting vibration mode 

ωSRS ≈ 735 cm–1 are indicated by scale brackets. 
 
 
 4 Conclusions In the conducted SRS experiments 
with fine-grained ceramics based on Ba(Mg,Zr.Ta)O3 ox-
ide with “disordered” perovskite 5

h
O -structure we have ob-

served its high-order Raman-induced Stokes and anti-
Stokes lasing, as well as SHG, THG, and cascaded param-
etric generation in the UV spectral region. All registered 
χ
(3) nonlinear-laser lines were identified and attributed to 

the SRS-promoting vibration mode ωSRS ≈ 735 cm
–1 of this 

novel highly transparent microcrystalline material. Its 
steady-state  Raman  gain  coefficient  St1

ssR
g ≈ 0.18 cm 

GW–1 was estimated for the first Stokes generation  
under one-micrometer picosecond pumping. For fine-
polished Ba(Mg,Zr,Ta)O3 ceramics the microhardness 
(H ≈ 950 kg mm–2) was also measured using a diamond  

 
 

 

Figure 5 Room-temperature spontaneous Raman scattering spectrum of Ba(Mg,Zr,Ta)O3 ceramic with “cubic” disordered structure 

that was recorded using a double-grating monochromator SG-100WD (Koken Kogyo) equipped with a photon counter C5410 

(Hamamatsu). The arrow indicates the excitation line at the 0.488 µm wavelength of Ar-ion laser. The frequency of some Raman 

shifted lines is given in cm–1.  
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Vickers indenter. There is no doubt that this “disordered” 
ceramic is also an attractive host-material for Ln3+ and TM 
lasants. It is probable that the SHG phenomenon related to 
the grain-boundary walls is the common property for 
highly transparent ceramics based on cubic oxides (see, e.g. 
[6]). 
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